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Generalized Maxwell state and H theorem for computing fluid flows
using the lattice Boltzmann method
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Generalized Maxwell distribution function is derived analytically for the lattice Boltzmann (LB) method. All
the previously introduced equilibria for LB are found as special cases of the generalized Maxwellian. The
generalized Maxwellian is used to derive a different class of multiple relaxation-time LB models and prove the

H theorem for them.
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A branch of kinetic theory—the lattice Boltzmann (LB)
method—has recently met with a remarkable success as a
powerful alternative for solving the hydrodynamic Navier-
Stokes equations, with applications ranging from large Rey-
nolds number flows to flows at a micron scale, porous media,
and multiphase flows, see, e.g., [1-3] and references therein.
The LB method solves a fully discrete kinetic equation for
populations f,(x,7), designed in a way that it reproduces the
Navier-Stokes equations in the hydrodynamic limit in D di-
mensions. Populations correspond to discrete velocities v,
for «=0,1,...,0-1, which fit into a regular spatial lattice
with the nodes x. This enables a simple and highly efficient
algorithm based on (a) nodal relaxation and (b) streaming
along the links of the regular spatial lattice. On the other
hand, numerical stability of the LB method remains a critical
issue [2]. Recalling the role played by the Boltzmann H theo-
rem in enforcing macroscopic evolutionary constraints (the
second law of thermodynamics), pertinent entropy functions
have been proposed [4-8]. The full connection of LB to
kinetic theory was established by the discrete-velocity analog
of the Maxwellian [see Eq. (2) below].

Admittedly, however, other heuristic methods were pro-
posed recently to enhance stability of LB. The rationale be-
hind one of them, the multiple relaxation time (MRT) [9-11],
is sound. Since the incompressible flow is the only concern,
the bulk viscosity arising in the quasicompressible LB
scheme can be viewed as a free parameter and tuned in order
to enhance stability. However, in spite of popularity of the
MRT method, to date, it cannot be considered as a consistent
kinetic theory but rather a numerical trick where tuning of
parameters is based on experience rather than on physics.

In this paper, we present a different consideration of the
LB models and derive a crucial result: the closed-form gen-
eralized equilibrium [see Eq. (3) below]. The generalized
equilibrium is the analog of the anisotropic Gaussian and is a
long-needed relevant distribution in the LB method. This
finding further allows us to introduce an innovative class of
entropy-based MRT LB models which enjoy both the H
theorem and the additional free-tunable parameter for con-
trolling the bulk viscosity, where the range is dictated by the
entropy.

For the sake of presentation and without any loss of gen-
erality, we consider the popular nine-velocity model, the so-
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called D2Q9 lattice, of which the discrete velocities are v
=(0,0) and v;=(*c¢,0) and (0,=*c) for i=1-4, and v;
=(*c¢, *¢) for i=5-8 [12] where ¢ is the lattice spacing.
Recall that the D2Q9 lattice derives from the three-point
Gauss-Hermite formula [13] with the following weights of
the quadrature w(—1)=1/6, w(0)=2/3, and w(+1)=1/6. Let
us arrange in the list v, all the components of the lattice
velocities along the x axis and similarly in the list v,. Analo-
gously let us arrange in the list f all the populations f,.
Algebraic operations for the lists are always assumed com-
ponent wise. The sum of all the elements of the list p is
denoted by (p)=32,'p;. The dimensionless density p, the
flow velocity u, and the second-order moment (pressure ten-
sor) II are defined by p=(f), pu;=(v,f), and pll;=(v,v;f),
respectively.

On the lattice under consideration, the convex entropy
function (H function) is defined as [5]

H(f) = {f In(fIW)), (1)

where W=w(v,)w(v,). The H-function minimization prob-
lem is considered in the sequel. It is well known [5] that the
equilibrium population list f,, is defined as the solution of
the minimization problem fM:minprMH(f), where Py, is
the set of functions such that Py, ={f>0:(f)=p, (vf)=pu}.
In other words, minimization of the H function Eq. (1) under
the constraints of mass and momentum conservation yields

[6]

2u/c) + e(u,lc) )vo/c

fu=p H w(v,)[2 - (p(ua/C)]( 1= (uy/c)

a=x,y
2)

where ¢(z)=v3z?+1. A remarkable feature of equilibrium
(2) which it shares with the ordinary Maxwellian is that it is
a product of one-dimensional equilibria. In order to ensure
the positivity of fj,;, the low Mach number limit must be
considered, i.e., u,| <c.

In this paper, we derive a different constrained equilib-
rium, or quasiequilibrium [14], by requiring, in addition, that
the diagonal components of the pressure tensor IT have some
prescribed values. Hence let us introduce a different minimi-
zation problem. The quasiequilibrium population list f; is
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FIG. 1. (Color online) Contour plot of the entropy H; [Eq. (4)]
at p=1, u,=-0.2, and u,=0.1 (c=1). Rectangular domain is the
positivity domain ). M is the image of Maxwellian (2). O is the
image of a generic nonequilibrium state while C is the image of the
constrained equilibrium (7) (minimum of Hg on the line Ly). C' is
the low Mach number approximation of C, while the line segment
connecting C’ and C” represents admissible generalized equilibria
E(w) [Eq. (16)] with E(1)=C" and E(0*)=C" at w*=-1.

defined as the solution of the minimization problem fg;
=minsp_ H(f), where P;CP,, is the set of functions such
that Ps={f>0:(f)=p, (wfH=pu, Wif)=pll,,}. In other
words, minimization of the H function Eq. (1) under the
constraints of mass and momentum conservation and pre-
scribed diagonal components of the pressure tensor yields

v,/c
fozp T wivw 3(c? aa)( /gaatzza>

a=x,y aa a

X<2\H2 u 2) v 5
et | '

To ease notation, we use IT=(II,,,IL,,) for a generic point on
the two-dimensional plane of parameters. In order to ensure
the positivity of fg, it is required that ITe ) where Q
={Il:clu| <II,,<c?, clu,|<II, <c? is a convex rectan-
gular in the plane of parameters for each velocity u (see Fig.
1).

The generalized Maxwellian (3) is the central result of
this paper and is the key to the derivations below. It is inter-
esting to note that while equilibrium (2) is analogous to the
ordinary Maxwellian [spherically symmetric Gaussian f),
~exp{-m(v-u)?/2kg®,}, shifted from the origin by the
amount of mean flow velocity # and with the width propor-
tional to the fixed temperature ®,=c?/3], quasiequilibrium
(3) resembles the anisotropic Gaussian, fg~exp{—(1/2)(v
—u)-1I""-(v-u)}. The latter generalized Maxwellian corre-
sponds to the ellipsoidal symmetry and is among the only
few analytic results on the relevant distribution functions in
the classical kinetic theory [15]. It is revealing that also in
the LB realm the analog of the generalized Maxwellian has a
nice closed form (3). The physical sense of Eq. (3) is that it
distinguishes the relaxation of the diagonal components of
the pressure tensor (and hence also of the trace of this tensor)
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among other nonconserved moments, and hence one expects
a control over the dynamics of the trace which is responsible
for the bulk viscosity (see below). Moreover, it is possible to
evaluate explicitly the H function in the generalized Maxwell
states in Eq. (3), H;=H(f;); the result is elegantly written as

Ho=plnp+p2 2 walllnlal,,)], )
a=x,y k=—0,+
where w.=w(*+1), wy=w(0), a.(l,,)=3(I1,,=* cu,)/c?,
and ay(I1,,,)=3(c*>-11,,)/(2¢?) (see Fig. 1).

Finally, with the help of f [Eq. (3)], let us derive a con-
strained equilibrium f- which brings the H function to a
minimum among all the population lists with a fixed trace of
the pressure tensor T(II)=1II,,+I1,,. In terms of the param-
eter set (), this is equivalent to require that the point C
—(Hi’;,Hc) belongs to a line segment L,={ITeQ:II,,
+11;,= T} and the constrained equilibrium C is the one mini-
mizmg the function Hg; [Eq. (4)] on Ly (see Fig. 1). Since the
restriction of a convex function to a line is also convex, the
solution to the latter problem exists and is found by
[(6Hg/ dll ) —(9H 5/ aHyy)](Hx‘(’Hy)')ELT=O’ which yields a cu-
bic equation in terms of the normal stress difference N
=116 -11S,

vy’
N’ +aN*+bN+d=0,

1
a=- E(M)Zc - ui), b= -T)(T-u),

d=- %(uf—ui)(Zcz— 7). (5)

Let us define p=—a®/3+b, q=2a’/27—-ab/3+d, and A
=(q/2)*>+(p/3)3. As long as A=0, which is well satisfied in
the low Mach number limit, the Cardano formula implies

T 1 ’ -
HC=—+—(r—£—C—l), r= —g+\"A, (6)
3r 3 2

while Hycsz—Hg. Thus, substituting Eq. (6) into Eq. (3),
we find the constrained equilibrium

fe=folp.u, IS (u,T), H L, T)]. (7)

Before proceeding any further, we mention that the general-
ized Maxwellian (3) is consistent with and extends the pre-
viously known results.

(i) The point of global minimum of the function H
[Eq. 4)] on Q is found from (9H/dll,,)=0. The corre-
sponding _solution M=(IIY TI),  where TI¥ =—c?/3
+(2¢2/3)V1+3(u,/c)?, recovers the equilibrium fu [Eq. (2)]
upon substitution into Eq. (3): fy=fslp.u, 11" (), HM(u)]

(ii) In Ref. [7], a different LB equ1hbr1um fo was 1ntr0-
duced as the entropy minimization problem under fixed den-
sity, momentum, and energy. That equilibrium was evaluated
exactly only for vanishing velocity in [7] while a series ex-
pansion was used for ##0. The present result reported
above solves the problem of Ref. [7] exactly for any velocity.
Substituting 7=20 +u? (two-dimensional ideal-gas equation
of state with @ as the temperature) into Eq. (7), it is simply
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folp,u,®)=fc[p,u ,ch(u 20 +u?) ,va(u ,20+u%)].  Ex-
panding the exact solution I1¢, [Eq. (6)] in terms of the ve-
locity u yields the approximate solution consistent with Ref.

[7], namely,

®+1)2 (3@-1

2 4
20 u, + 10 )uy+0(u ). (8)

Hg=®+(

(iii) In Ref. [16], a so-called guided equilibrium fg was in-
troduced in order to derive the LB method for compressible
flows. That equilibrium is recovered by simply assuming the
Maxwell-Boltzmann form of the diagonal components, IT,,
=0+u> and Hyy=®+u§, in Eq. 3): fo(p,u,®)=f:(p,u,®
+ui,®+u3).

Thus, the generalized Maxwellian (3) and its implication,
the constrained equilibrium (7), unifies all the equilibria in-
troduced previously on the D2Q9 lattice. Armed with the
constrained equilibrium, we now proceed with the derivation
of the kinetic equation. By means of the usual equilibrium M
and the presently found constrained equilibrium C, let us
define the generalized equilibrium E(w):[l_[fx(w),l_[fy(w)]
as a linear interpolation between the points M and C on the
IT plane,

E(w)=(1 - 0)M + oC, 9)

where w is a free parameter, and its admissible range will be
defined next. Thus, the generalized equilibrium list is defined
as

foe(®) = fo(pu,TTE (), 1T (). (10)

Considering the kinetic equation of the form d,f+vd.f
=J(f), let us define the following collision operator:

J(f) = Nfee(w) - 11, (11)

where A >0 is a parameter, ruling the relaxation toward the
generalized equilibrium. In the continuum limit, A is related
to the kinematic viscosity. While Eq. (11) reminds the popu-
lar Bhatnagar-Gross-Krook (BGK) model [17], the collision
integral (11) depends on two parameters, A and w. In view of
the analogy of f; with the anisotropic Gaussian, this is some-
what similar to the so-called ellipsoidal statistical model
[17]. However, in our case, the leading order of the macro-
scopic equations recovered in the continuum limit does not
depend on w, which is a tunable parameter for enhancing the
stability of the corresponding LB scheme. Collision operator
(I1) conserves mass and momentum, i.e., (J(f))=0 and
(vJ(f))=0. Note that at w=0, Eq. (11) reduces to the BGK
LB model of Ref. [5], while at w=1 it becomes the so-called
consistent LB model with energy conservation [7] (see re-
mark (i) above).

The key for proving the H theorem for the kinetic equa-
tion is to establish the nonpositivity of the entropy produc-
tion o due to the relaxation term (11), where

o ={In(f/W)J(f)). (12)

Clearly, if f=f,, then C=M and I1%(w)=11" for any .
From remark (i), it follows that entropy production annihi-
lates at the equilibrium, o(f),)=0. In the general case, we
have
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= Hgg(w) — H(f) = Hgg(w) — Hg(1), (13)

> 19

where HGE(w)zHG[HfX(w),Hf,y(w)]. The first inequality is
due to the convexity of the H function, while the second
holds because f5(Il,,,Il,,), by definition, minimizes H
among all the population lists with the moments (IL,,,IL,,).
Recalling that I[fgg(1)] and I f5(I1,,,I1,)] have the same
trace and taking into account the definition of the point C,

inequality (13) can be rewritten as

= Hgg(w) — Hge(1) + Hgg(1) — H(IT)

> 19

= Hgg(w) — Hgg(1). (14)

What remains is to estimate the range of w such that
Hgp(w) =Hgg(1). Clearly, since M=E(0) is the absolute
minimum of H and because Hgp(w) is a convex function (a
restriction of a convex function to a line), the right-hand side
of Eq. (14) is nonpositive if 0= w<1. This proves nonposi-
tivity of the entropy production in the interval 0=w<1. In
order to extend the proof to w<<0, let us consider the entropy
estimate [5] (see also [18]),

Hgg(w®) =Hgg(1). (15)

Thanks to the convexity of Hgp(w), the nontrivial solution
" <0 to this equation is unique when it exists. In the oppo-
site case, we take w*<0 from the condition, E(w") e (2,
where Q) is the boundary of the positivity domain (). In
both cases, for w*=w=0, it holds Hgp(w)=Hgg(1). Thus,
if w takes values in the interval w*= w<1, the entropy pro-
duction is nonpositive, =0, which proves the existence of
the H theorem for the proposed model. Note that from the
entropy estimate, it follows that ", in general, depends on
the state f. However, Eq. (15) drastically simplifies at low
Mach numbers which we consider next.

In the case of diffusion scaling [19,20], i.e., the flow re-
gime with Kn~Ma~u/c<<1, where Kn is the Knudsen
number and Ma is the Mach number, Eq. (8) simplifies to
foz(T/ 2)+(Hg—l‘["‘,’;)/ 2+0(u*) and similar to Hycy. Intro-
ducing these results in Eq. (9) allows one to recast the defi-
nition of the generalized equilibrium, namely,

T-Ty

Hfm(w) = nga+ 1) + 0. (16)

Using Eq. (16) in the definition of the collision operator (11)
and neglecting all the terms in the higher moments which are
2 order of magnitude (with regards to u) smaller than the
corresponding terms required to recover incompressible
Navier-Stokes equations [20], the collision operator can be
simplified to

J' (N =Afu -1,
where A=\B~'AB and 9 X 9 matrices B and A are

(17)

. ry r_
A =diag| [0,0,0], JL L1,
r_ ry
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2 2 2 2 2 T
B=[1,0,,0,,0},0},0,0,,030,,0,0,,0,:0,]", (18)

with r.=(r%1)/2 and r=1-w. Operator J' is a MRT colli-
sional operator with collision matrix A (characterized by two
relaxation frequencies N and =r\). It is possible to prove by
means of the asymptotic analysis [21] that in the continuum
limit, J' leads to the kinematic (shear) viscosity and the sec-
ond (bulk) viscosity coefficients given, respectively, by

c? c?

v=_— §=3—5.

BETS (19)

Finally, for low Mach numbers, the entropy Hgg can be es-
timated as follows:

3 9
Hge=plnp+ Epu2 + gp(T— Ty w” + 0u®). (20)

Using Eq. (20) in the entropy condition (15), we find o*
~-1 (see Fig. 1). Consequently, the stability region of the
relaxation frequency & controlling the bulk viscosity is esti-
mated 0<<S<2\ or, taking into account Eq. (19), equiva-
lently 0<wv/{<<2. In particular, for high Reynolds number
flows, the ratio v/ ¢ tends to the lowest limit, i.e., large bulk
viscosity is required to make the numerical computations
more stable.

Since the bulk viscosity controls the attenuation of acous-
tic waves, which are fictitious when searching for the incom-
pressible limit, increasing this tunable parameter allows one
to mitigate the effects of fictitious compressibility and hence
it increases the stability region of the scheme. In order to
check the accuracy of the scheme, let us consider the Taylor-
Green vortex flow test. Let us consider a square domain
(x,y) €[0,27/k] X[0,27/k]. The Taylor-Green vortex flow
has the following analytical solution [22]:

u, = — g cos(kx)sin(ky)exp(— 2vk*t), (21)

uy = ug cos(ky)sin(kx)exp(— 20k%t), (22)

2
p=- %[cos(ka) + cos(2ky) Jexp(— 4vk*t), (23)

where the pressure is p=(c?p)/(3py). It is immediate to
prove that

1 2malk 2wk M2
D(r) =~ f f (1 + u?)K>dxdy = —2exp(— 4vk’1).
2J 0 ’ 4

(24)

The previous formula suggests a simple way to measure the
actual kinematic viscosity. Introducing the simulation time
t€[0,1,], the measured kinematic viscosity is given by

e =

_ In[4b(19)/ug]

25
4k%t, @5)

In the following numerical results, we set k=1, uy=1,
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TABLE I. Taylor-Green vortex flow test. Some numerical tests
are reported for different kinematic viscosity v and bulk viscosity &.
The mesh is made of 160X 160 nodes. The Knudsen number is
Kn=1/160, the Mach number is Ma=1/16, and finally the Rey-
nolds number is Re=27/v. The actual kinematic viscosity v, is
measured by means of Eq. (25) and the relative error (v—w,)/v is
reported as well.

Error
v/ & v Measured v, (%)
LBGK 1 0.001 0.00102065 2.0648
Present 0.1 0.001 0.00102071 2.0713
Present 0.01 0.001 0.00102106 2.1058
LBGK 1 0.010 0.00998509 —-0.1491
Present 0.1 0.010 0.00998555 —0.1445
Present 0.01 0.010 0.00998654 —-0.1346
LBGK 1 0.100 0.09977323 —-0.2268
Present 0.1 0.100 0.09977355 -0.2264
Present 0.01 0.100 0.09977230 -0.2277

po=1, and t,=5. Consequently the Reynolds number be-
comes Re=27/v. Let us consider a homogeneous mesh
made of 160 X 160 nodes, which implies a Knudsen number
of Kn=1/160. Let us select the Mach number as Ma=1/16.
Some numerical tests are reported for different kinematic
viscosity v and bulk viscosity & The numerical results are
reported in Table I and compared with the standard lattice
BGK (LBGK) model. First of all, this test shows that the
model recovers the right kinematic viscosity. Moreover, the
relaxation frequency &, controlling the bulk viscosity, does
not affect the leading part of the solution. According to the
previous test, even large bulk viscosities may be adopted
without affecting significantly the numerical results.

To conclude, the generalized Maxwellian (3) opens a dif-
ferent perspective on the LB method. Various LB equilibria
introduced in the past are special cases of Eq. (3). Important
application of Eq. (3), considered in this paper, is a different
class of entropic multiple relaxation-time (E-MRT) LB mod-
els. They enjoy both the H theorem and the additional free-
tunable parameter for controlling the bulk viscosity. Hence,
they combine the two most successful strategies for enhanc-
ing stability of LB for high Reynolds number simulations.
Because all the results above are derived in a closed form,
numerical implementation of the E-MRT LB models is
straightforward. Preliminary numerical results demonstrated
that efficient stabilization of the LB simulation without loss
of accuracy is indeed achieved with the suggested scheme.
Moreover, the implementation is not much different from the
familiar LBGK scheme, unlike the standard MRT model.
These results show that the present model can be used for
enhancing stability instead of the most popular LBGK
method. Details of the implementation and numerical results
will be reported in a separate publication.
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